

DA4

Digital to Analog

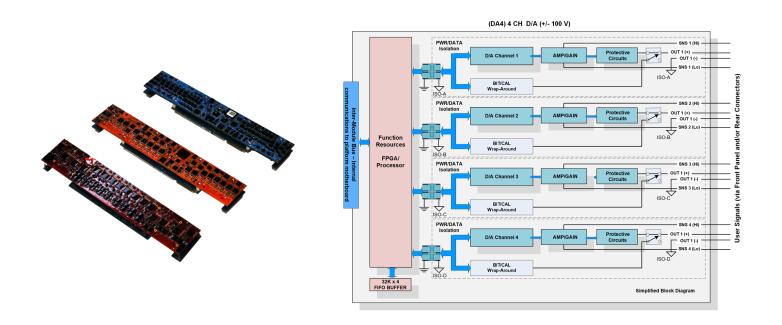
Function Module

MODULE MANUAL

REVISION HISTORY	4
DA4 DATA SHEET	5
INTRODUCTION	7
FEATURES	7
PRINCIPLE OF OPERATION	7
Built-In Test (BIT)/Diagnostic Capability	7
Power-On Self-Test (POST)/Power-On BIT (PBIT)/Start-Up BIT (SBIT)	7
Continuous Background Built-In Test (CBIT)	7
Initiated Built-In Test (IBIT)	8
Voltage Feedback Sense Lines	8
D/A FIFO Buffering/Pattern Buffer	8
Status and Interrupts	8
Engineering Scaling Conversions	9
Watchdog Timer Capability	9
REGISTER DESCRIPTIONS	10
D/A Output Registers	10
DAC Value	10
D/A Control Registers	11
Voltage Range	11
Power Enable	11
Update Rate	11
Overcurrent Reset	12
Overcurrent Value	12
D/A Measurement Registers	13
Wrap Voltage	13
Wrap Current	14
D/A Test Registers	14
Test Enabled	
FIFO/RAM Registers	15
Data Mode	15
Buffer Mode	15
FIFO Registers	15
Pattern Registers	18
Engineering Scaling Conversion Registers	19
Enable Floating Point Mode	19
Floating Point Offset	19
Floating Point Scale	19
Floating Point State	20
Background BIT Threshold Registers	20
Background BIT Threshold	20
Reset BIT	20
Watchdog Timer Registers	20
Status and Interrupt Registers	20
Channel Status Enabled	21
BIT Status	21
Overcurrent Status	22
External Power Under Voltage	22
Inter-FPGA Failure Status/Watchdog Timer Fault	23
Summary Status	23
FIFO Status	23
Interrupt Vector and Steering	25
	20

FUNCTION REGISTER MAP	26
D/A Output Registers	26
D/A Control Registers	26
D/A Measurement Registers	26
FIFO/RAM Registers	26
Engineering Scaling Conversion Registers	27
Watchdog Timer Registers	27
D/A Status Registers	27
BIT Registers	28
Status Registers	28
Interrupt Registers	29
APPENDIX A: INTEGER/FLOATING POINT MODE PROGRAMMING	32
Integer Mode Programming	32
Floating Point Mode Voltage Programming	32
Floating Point Mode Engineering Units Programming	33
APPENDIX B: PIN-OUT DETAILS	35
MODULE MANUAL - STATUS AND INTERRUPTS	36
STATUS AND INTERRUPTS	37
Interrupt Vector and Steering	37
Interrupt Trigger Types	38
Dynamic and Latched Status Registers Examples	39
Interrupt Examples	40
MODULE MANUAL - USER WATCHDOG TIMER	42
USER WATCHDOG TIMER MODULE MANUAL	43
User Watchdog Timer Capability	43
Principle of Operation	44
Register Descriptions	46
User Watchdog Timer Registers	46
Status and Interrupt	47
Function Register Map	49
NAI Cares	50
FAQ	50
Application Notes	50
Calibration and Repairs	50
Call Us	50

Revision History


Module Man	ual - DA4 Revision	History							
Revision	Revision Dat	e Description							
С	2022-11-03	ECO C09774, initial release of module manual.							
Module Man	ual - Status and Inte	errupts Revision History							
Revision	Revision Date	escription							
С	2021-11-30	C08896; Transition manual to docbuilder format - no technical info change.							
Module Man	ual - User Watchdog	g Timer Revision History							
Revision	Revision Date	Description							
С	2021-11-30	C08896; Transition manual to docbuilder format - no technical info change.							

DA4 I/O Modules Digital-to-Analog Function Modules 4 (High Voltage) D/A Outputs (±100 VDC)

The Digital-to-Analog (D/A) module DA4 provides 4 high-voltage independent D/A output channels with a maximum full-scale range of ± 100 VDC at ± 10 mA (max). Linearity/accuracy is $\pm 0.15\%$ FS range over temperature. The DA4 provides voltage control loop mode, which is programmable for the application.

The DA4 module includes extensive Background Built-in-Test (BIT). In addition to output signal read-back (wrap) capabilities, overloaded outputs are detected with automatic channel shut-down protection, and the results are displayed in a status word. DA4 also include D/A FIFO buffering for greater control of the output voltage and signal data. Once enabled and triggered, the D/A FIFO buffer accepts, stores, and outputs the voltage commands for applications requiring simulation of waveform generation (single or periodic). The output data command word is formatted as a percentage of the Full Scale (FS) range selection, which allows maximum resolution and accuracy at lower voltage ranges.

Features

- High-quality D/A conversion, 16-Bit/channel
- Designed to meet the testing requirements of IEC 801-2 Level 2
- Continuous background BIT
- · Automatic shutdown protection with the results displayed in a status word
- Extended D/A FIFO buffering capabilities

Specifications

Resolution	16-bit/channel for voltage command mode.
Output Format	Single-ended
Output Range	±100 VDC (unipolar or bipolar); ranges are programmable in pairs.
Output Impedance	<10
System Protection	Output is set to 0 V at reset or Power-On.
Linearity Error	±0.15% FS range over temperature
Offset Error	±100 mV
Gain Error	±0.08% FS range
Settling Time	350 μs (max.)
Data Buffer	See Operations Manual for details.
Load	Can drive a capacitive load of 0.1 μF, 10 mA/Ch max. (Source or Sink). Short circuit protected. When current exceeds 10 mA for any channel, for > 50 ms, that channel is set to 0 V and a flag is set.
Update Rate	5 μs per channel
ESD Protection	Designed to meet the testing requirements of IEC 801-2 Level 2. (4 kV transient with a peak current of 7.5 A and a time constant of approximately 60 ns).
Power	5 VDC @ 300 mA typical (est.); ±12 VDC @ 200 mA (est. quiescent) Add 2 mA per 1 mA load per channel
Ground	Channel pair returns (Ch-Lo (-)) are common but are isolated (250 Vpeak) from system ground.
Weight	1.5 oz. (42 g)

Architected for Versatility

NAI's Configurable Open Systems Architecture[™] (COSA®) offers a choice of over 100 smart I/O, communications, or Ethernet switch functions, providing the highest packaging density and greatest flexibility of ruggedized embedded product solutions in the industry. Preexisting, fully-tested functions can be combined in an unlimited number of ways quickly and easily.

One-Source Efficiencies

Eliminate man-months of integration with a configured, field-proven system from NAI. Specification to deployment is a seamless experience as all design, state-of-the-art manufacturing, assembly and test are performed - by one trusted source. All facilities are located within the U.S. and optimized for high-mix/low volume production runs and extended lifecycle support.

Product Lifecycle Management

From design to production and beyond, NAI's product lifecycle management strategy ensures the long-term availability of COTS products through configuration management, technology refresh and obsolescence component purchase and storage.

All specifications are subject to change without notice. All product and company names are trademarks or registered trademarks of their respective holders

INTRODUCTION

This module manual provides information about the North Atlantic Industries, Inc. (NAI) Digital-to-Analog Function Module: DA4. This module is compatible with all NAI Generation 5 motherboards.

Digital-to-Analog (D/A) module DA4 provides 4 independent D/A output channels with a full-scale range ±100 VDC @ ±10 mA (max). Linearity/accuracy is ±0.15% FS range over temperature. The DA4 provides voltage control loop mode, which is programmable for the application.

FEATURES

- High-quality D/A conversion, 16-Bit/channel
- Designed to meet the testing requirements of IEC 801-2 Level 2
- Continuous background BIT
- · Automatic shutdown protection with the results displayed in a status word
- Extended D/A FIFO buffering capabilities

PRINCIPLE OF OPERATION

In addition to the functions and features already described, this module includes extensive background BIT/diagnostics that run in the background in normal operation without user intervention. In addition to output signal read-back (wrap) capabilities, overloaded outputs will be detected with automatic channel shutdown protection, with the results displayed in a status word. The module also include D/A FIFO Buffering for greater control of the output voltage and signal data. The FIFO D/A buffer will accept, store, and output the voltage commands, once enabled and triggered, for applications requiring simulation of waveform generation; single or periodic. The output data command word is formatted as a percentage of the full scale (FS) range selection, which allows maximum resolution and accuracy at lower *voltage ranges*.

Built-In Test (BIT)/Diagnostic Capability

The DA4 module supports three types of built-in tests: Power-On, Continuous Background and Initiated. The results of these tests are logically OR'd together and stored in the *BIT Dynamic Status* and *BIT Latched Status* registers.

Power-On Self-Test (POST)/Power-On BIT (PBIT)/Start-Up BIT (SBIT)

The power-on self-test is performed on each channel automatically when power is applied and report the results in the *BIT Status* register when complete. After power-on, the *Power-on BIT Complete* register should be checked to ensure that POST/PBIT/SBIT test is complete before reading the *BIT Dynamic Status* and *BIT Latched Status* registers.

Continuous Background Built-In Test (CBIT)

The background Built-In-Test or Continuous BIT (**CBIT**) (*"D2"*) runs in the background where each channel is checked to a test accuracy of 0.2% FS. The testing is totally transparent to the user, requires no external programming, and has no effect on the operation of the module or card.

The technique used by the continuous background BIT (**CBIT**) test consists of an "add-2, subtract-1" counting scheme. The BIT counter is incremented by 2 when a BIT-fault is detected and decremented by 1 when there is no BIT fault detected and the BIT counter is greater than 0. When the BIT counter exceeds the (programmed) Background BIT Threshold value, the specific channel's fault bit in the BIT status register will be set. Note, the interval at which BIT is performed is dependent and differs between module types. Rather than specifying the BIT Threshold as a "count", the BIT Threshold is specified as a time in milliseconds. The module will convert the time specified to the BIT Threshold "count" based on the BIT interval for that module. The "add-2, subtract-1" counting scheme effectively filters momentary or intermittent anomalies by allowing them to "come and go" before a BIT fault status or indication is flagged (e.g. BIT faults would register when sustained; i.e. at a ten second interval, not a 10-millisecond interval). This prevents spurious faults from registering valid such as those caused by EMI and/or dirty power causing false BIT faults. Putting more "weight" on errors ("add-2") and less "weight" on subsequent passing results (subtract-1) will result in a BIT failure indication even if a channel "oscillates" between a pass and fail state.

Initiated Built-In Test (IBIT)

The DA4 module supports an off-line Initiated Built-in Test (IBIT) ("D3").

The **IBIT** test uses an internal A/D that measures all D/A channels while they remain connected to the I/O and cycle through 16 signal levels from -FS to +FS. Each channel will be checked to a test accuracy of 0.2% FS. The test cycle is completed within 45 seconds (depending on *update rate*) and results can be read from the Status registers when **IBIT** bit changes from **1** to **0**. This test requires no user programming and can be enabled via the bus.

Voltage Feedback Sense Lines

The DA4 includes two voltage feedback sense lines for each output channel. It is always recommended that the sense lines be utilized and connected at the external load to provide maximum measurement accuracy (which ensures that the commanded voltage is applied at the load). Sense (Hi) should be connected to Output (Hi), and Sense (Lo) should be connected to Output (Lo).

If additional wiring is prohibitive in the application, the sense lines may alternately be terminated at the connector.

D/A FIFO Buffering/Pattern Buffer

The DA4 module provides the ability to use memory buffers either as a Pattern buffer, (addressable RAM used for creating an output pattern (or cycling) or as a FIFO buffer. These buffers provide greater control of the output voltage and signal data. The D/A buffers will accept, store and output the voltage commands, once enabled and triggered, for applications requiring simulation of waveform generation; single or periodic. The output data command word is formatted as a percentage of the full scale (FS) range selection, which allows maximum resolution and accuracy at lower voltage ranges.

Status and Interrupts

The D/A Module provides registers that indicate faults or events. Refer to "Status and Interrupts Module Manual" for the Principle of Operation description.

Engineering Scaling Conversions

The D/A Module Data, Voltage and Current Measurement registers can be programmed to be utilized as single precision floating point values (IEEE-754) or as a 32-bit integer value.

When the *Enable Floating Point* Mode register is set to 1 (Floating Point Mode) the following registers are formatted as Single Precision Floating Point Value (IEEE-754):

- Wrap Voltage (Volts)
- Wrap Current (mA)
- DAC Value (Voltage (Volts))*
- FIFO Buffer Data/Pattern RAM Buffer*

*When the Enable Floating Point Mode register is set to 1, it is important that these registers are updated with the Single Precision Floating Point (IEEE-754) representation of the value for proper operation of the channel. Conversely, when the Enable Floating Point Mode register is set to 0, these registers must be updated with the Integer 32-bit representation of the value.

<u>Note</u>, when changing the *Enable Floating Point Mode* from Integer Mode to Floating Point Mode or vice versa, the following step should be followed to avoid faults from falsely being generated because interior registers have an incorrect binary representation of the values:

- 1. Set the Enable Floating Point Mode register to the desired mode (Integer or Floating Point).
- 2. Wait for the *Floating Point State* register to match the value for the requested Floating Point Mode (Integer = 0, Floating Point = 1); this indicates that the module's conversion of the register values and internal values is complete. Data registers will be converted to the units specified and can be read in that specified format.
- 3. Initialize configuration and control registers with the values in the units specified (Integer or Floating Point).

It is very often necessary to relate D/A voltage and current to other engineering units such as PSI (Pounds per Square Inch). When the *Enable Floating Point Mode* register is set to 1, the values entered for the *Floating Point Offset* register and the *Floating-Point Scale* register will be used to convert the D/A data from engineering units to voltage or current values. The purpose of this is to offload the processing that is normally performed by the mission processor to convert the physical quantity to voltage or current values for the *DAC Value* register and the *FIFO Buffer Data* register. When enabled, the module will compute the D/A data as follows:

D/A Value as Volts/Current (Floating Point) =

(D/A Value in Engineering Units (Floating Point) + Floating Point Offset) * Floating Point Scale

Note:

When *Enable Floating Point* Mode is set to 1 (Floating Point Mode) the listed registers below are formatted as Single Precision Floating Point Value (IEEE-754) and the values specified in the *Floating Point Offset* register and the *Float Point Scale register* applied:

- DAC Value
- FIFO Buffer Data/ Pattern RAM Buffer

Watchdog Timer Capability

The Digital-to-Analog Modules provide support for Watchdog Timer capability. Refer to "Watchdog Timer Module Manual" for the Principle of Operation description.

REGISTER DESCRIPTIONS

The register descriptions provide the register name, Type, Data Range, Read or Write information, Initialized Value, a description of the function and, in most cases, a data table.

D/A Output Registers

The D/A output is normally in terms of voltage. When the *Enable Floating Point* Mode is enabled, the register value is formatted as a Single Precision Floating Point Value (IEEE-754). In addition, the D/A output value can be specified in engineering units rather than voltage by setting the *Floating Point Scale* and *Floating Point Offset* register values to reflect the conversion algorithm.

DAC Value

Function: Sets the output voltage for the channel.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: DAC values are dependent on Voltage Range setting for the channel

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: 0x0000 0000 to 0x0000 FFFF;

Bipolar (2's compliment. 16-bit value sign extended to 32 bits): 0xFFFF 8000 to 0x0000 7FFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

Operational Settings: Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

D/A Control Registers

The D/A control registers provide the ability to specify how the D/A channel is outputting voltage, polarity and *voltage range, update rate*, and the enabling or disabling of the power to the D/A channel. The D/A channels are monitored to detect overcurrent conditions and will automatically disable the D/A output. In the event of an overcurrent condition, the D/A channel needs to be "reset" by writing to the *Overcurrent Reset* register. The D/A *Overcurrent Value* register provides that ability to programmatically change the threshold of the overcurrent detection.

Voltage Range

Function: Sets voltage polarity and range for each channel. The value written to the *DAC Value* register (or values coming from the memory buffer) will correlate to the *voltage range* set in this register. *Note*, if the *Enable Floating Point Mode* register is set to **1**, the *Floating Point Scale* register must be set to the **reciprocal of Voltage Range**.

Type: unsigned binary word (32-Bit)

Data Range: See table below.

Read/Write: R/W

Initialized Value: 0 (Unipolar: 0-50 V)

Operational Settings: Write to the register with a value from the table to select the range. Ex: for the 0-40V unipolar range write a 0x0.

Reg Value	Voltage Range
0x0	Unipolar: 0 – 50 V
0x1	Unipolar: 0 – 100 V
0x2	Bipolar: ± 25 V
0x3	Bipolar: ± 50 V
0x4	Bipolar: ± 100 V

	Voltage Range														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	D	D	D

Power Enable

Function: Enables the DAC's channel power.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R/W

Initialized Value: 0x0000 000F (Channel power is enabled)

Operational Settings: Set bit to 1 to enable the power. Set bit to 0 to disable the power.

	Power Enable														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

Update Rate

Function: Sets the output rate for the DAC output, FIFO Data Output and RAM Output.

Type: unsigned binary word (32bit)

Data Range: 0x001E 8480 to 0x0003 0D40; 500ns (2MHz) to 5µs (200kHz).

Read/Write: R/W

Initialized Value: 0x001E 8480 (500ns) (2MHz)

Operational Settings: This setting is the output rate for each DAC. One update rate applies to all channels.

Overcurrent Reset

Function: Resets over loaded channels based on the Overcurrent Status register.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: 0

Operational Settings: Set to 1 to reset over loaded channels. Writing a 1 to this register will re-enable over loaded channels.

	Overcurrent Reset														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D

Overcurrent Value

Function: Sets the overcurrent value to be used to determine the overcurrent condition.

Type: unsigned binary word (32-bit)

Data Range: 0x0001 to 0x000C; 1 mA to 12 mA.

Read/Write: R/W

Initialized Value: 0x000C (12 mA); Note - steady state current rating for each channel is still 10 mA

Operational Settings: LSB = 1 mA. This setting is the value that is used to determine the overcurrent condition for each channel. This value is applied to both positive and negative currents. Note, the maximum value for the *overcurrent value* is 12 mA; values greater than this will be forced to the maximum value.

D/A Measurement Registers

The measured voltage and current for the D/A output can be read from the Wrap Voltage and Wrap Current registers.

Wrap Voltage

Function: Wrap voltage reading from the channel's output. Also used in conjunction with BIT to verify that the output voltage is within range of the user set DAC value (voltage-control mode). Accuracy is 0.2% FS.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range:

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: 0x0000 0000 to 0x0003 FFFF

Bipolar (2's compliment. 18-bit value sign extended to 32 bits): 0xFFFE 0000 to 0x0001 7FFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: 0

Operational Settings: To calculate the LSB subtract the minimum *voltage range* from the maximum *voltage range* then divide by 2^16. For example, if the value in the *Voltage Range* register is range 0-50V then the LSB would have value (50-0)/2^16 = 0.763 mV. Sign bit = **D17** for bipolar ranges.

	Wrap Voltage (Enable Floating Point Mode: Integer Mode)														
D31	D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	D	D
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

	Wrap Voltage (Enable Floating Point Mode: Floating Point Mode)														
D31	D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D1												D16		
D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

Wrap Current

Function: *Wrap current* reading from the channel's output. Reads current values of D/A outputs being delivered per channel. Accuracy is 0.2% FS.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range:

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: 0x0000 0000 to 0x0003 FFFF

Bipolar (2's compliment. 18-bit value sign extended to 32 bits): 0xFFFE 0000 to 0x0001 7FFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: 0

Operational Settings: LSB = 305 nA. To calculate the LSB subtract the minimum range (-.010) from the maximum range (.010) then divide by 2^16. Sign bit = **D17** for bipolar ranges.

	Wrap Current (Enable Floating Point Mode: Integer Mode)														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	D	D
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

	Wrap Current (Enable Floating Point Mode: Floating Point Mode)														
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D10											D16				
D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

D/A Test Registers

Two different tests, one on-line (CBIT) and one off-line (IBIT), can be selected.

Test Enabled

Function: Sets bit to enable the associated CBIT ("D2") or IBIT ("D3"). Note - CBIT cannot be disabled

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000C

Read/Write: R/W

Initialized Value: 0x4 (CBIT Test Enabled)

Operational Settings: BIT tests include an on-line CBIT and an off-line IBIT tests. Failures in the BIT test are reflected in the *BIT Status* registers for the corresponding channels that fail. In addition, an interrupt (if enabled in the *BIT Interrupt Enable* register) can be triggered when the BIT testing detects failures.

							Test E	nabled					_		
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	IBIT Test D	CBIT Test 1	0	0

FIFO/RAM Registers

Data Mode

Function: Sets the data mode of the channel. The output can be based on either the DAC Value register or the RAM Buffer.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R/W

Initialized Value: 0 (The output will reflect the DAC Value register value)

Operational Settings: Write a **1** to use the memory buffer. Bit-mapped per channel.

							Data	Mode							
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

Buffer Mode

Function: Selects how the memory buffer will be used; either as a Pattern buffer (addressable RAM used for creating an output pattern (or cycling)) or FIFO buffer.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R/W

Initialized Value: 0 (RAM Mode)

Operational Settings: Write a **1** to use the buffer for the channel as a FIFO. Write a **0** to use the buffer as Pattern RAM. To use the memory buffer, ensure that the *Data Mode* register is set properly. Bit-mapped per channel.

							Buffe	r Mode							
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

FIFO Registers

FIFO Buffer Data

Function: Data in the form of *DAC values* are written to this register one word at a time (32-bits), and will be outputted to the channel's output once triggered. Buffer will be emptied one value at a time when triggered.

Type: signed binary word (32-bits) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range:

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: 0x0000 0000 to 0x0000 FFFF

Bipolar (2's compliment. 16-bit value sign extended to 32 bits): 0xFFFF 8000 to 0x0000 7FFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: W

Initialized Value: N/A

Operational Settings: Data is held in FIFO until triggered. FIFO size is 32767 words per channel (each channel has its own buffer).

FIFO Word Count

Function: Reports the number of words stored in the FIFO buffer.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 7FFF (empty to 32767)

Read/Write: R

Initialized Value: 0 (FIFO is empty)

Operational Settings: Each time a value is written to the FIFO buffer this count is incremented by 1. Once the FIFO is triggered, after each value is outputted to the DAC, this count will be decremented by 1. Watermarks and threshold values can be setup to trigger interrupts when this count crosses user defined values. The maximum number of words that can be stored in the FIFO is 32767 words.

FIFO Thresholds

The FIFO Almost Empty, FIFO Low Watermark, FIFO High Watermark, and FIFO Almost Full sets the threshold limits that are used to set the bits in the FIFO Status register.

FIFO Almost Empty

Function: This register enables the user to set the limit for the "almost empty" status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 7FFF

Read/Write: R/W

Initialized Value: 0x400 (1024)

Operational Settings: When the FIFO Word Count is less than or equal to the value stored in the FIFO

Almost Empty Value register, the "almost empty" bit (D1) of the FIFO Status register will be set. When the FIFO Count is greater than the value stored in the register, the "almost empty" bit (D1) of the FIFO Status register will be cleared.

FIFO Low Watermark

Function: The FIFO low watermark threshold enables the user to set the limit for the "low watermark" status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 7FFF

Read/Write: R/W

Initialized Value: 0x2000 (8192)

Operational Settings: When the *FIFO Count* is less than or equal than the value stored in the *FIFO Low Watermark Value* register, the "low watermark" bit (**D2**) of the *FIFO Status* register will be set. When the *FIFO Count* is greater than the value stored in the register, the "low watermark" bit (**D2**) of the *FIFO Status* register will be cleared.

FIFO High Watermark

Function: The FIFO high watermark threshold enables the user to set the limit for the "high watermark" status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 7FFF

Read/Write: R/W

Initialized Value: 0x6000 (24576)

Operational Settings: When the *FIFO Count* is greater than or equal to the value stored in the *FIFO High Watermark Value* register, the "high watermark" bit (**D3**) of the *FIFO Status* register will be set. When the *FIFO Count* counter is less than the value stored in the register, the "high watermark" bit (**D3**) of the *FIFO Status* register will be cleared.

FIFO Almost Full

Function: This register enables the user to set the limits for the "almost full" status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 7FFF

Read/Write: R/W

Initialized Value: 0x7C00 (31744)

Operational Settings: When the *FIFO Count* register is greater than or equal to the value stored in the *FIFO Almost Full Value* register, the "almost full" bit (**D4**) of the *FIFO Status* register will be set. When the *FIFO Count* is less than the value stored in the *FIFO Almost Full Value* register, the "almost full" bit (**D4**) of the *FIFO Status* register will be cleared

Clear FIFO

Function: Clears the FIFO buffer.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: 0

Operational Settings: Writing a 1 will clear the FIFO buffer and reset the count in the FIFO Word Count register.

							Clear	FIFO							
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D

FIFO Software Trigger

Function: If the memory buffer is enabled writing the trigger value to this register will start the output. Values stored in the FIFO will be output at the set *update rate* until the FIFO is empty.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: R/W

Initialized Value: 0

Operational Settings: To initiate output from the *FIFO Data* register the *Use FIFO* register must be enabled. Then write a **1** to the *FIFO Control* register to begin outputting data. The **1** will clear once the FIFO empties.

						FIFC) Softw	are Tr	igger						
D31															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D

Pattern Registers

Pattern Control

Function: Control the RAM data output.

Type: unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0

Operational Settings: The *Pattern Start Address* register determines where the Pattern output will begin when enabled. The *Pattern End Address* register determines where the *Pattern* output will end when enabled. After the pattern at the *Pattern End Address* is outputted, it will loop back to the start address.

Desc	ription
	Enable. This bit will enable or disable continuous pattern looping. Write 0x1 to
D0	enable and 0x0 to disable the pattern.
	Burst Mode: Writing 0x3 (D0 and D1) will burst the pattern from the start address
	to the end address for N number of times. N is determined by the value written in
D1	the Pattern Number of Cycles register.
D2	Pause: Set this bit to pause the pattern when enabled

						Pat	tern R	AM Co	ntrol						
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	D	D	D

Pattern Start Address

Function: Programs the starting address for the Pattern output buffer. There are 32767 address locations.

Type: unsigned binary word (32-bit)

Data Range: Ch 1: 0x0002 0000 to 0x0003 FFFC; Ch 2: 0x0004 0000 to 0x0005 FFFC; Ch 3: 0x0006 0000 to 0x0007 FFFC; Ch 4: 0x0008 0000 to 0x0009 FFFC

Read/Write: R/W

Initialized Value: Ch 1: 0x0002 0000; Ch 2: 0x0004 0000; Ch 3: 0x0006 0000; Ch 4: 0x0008 0000;

Operational Settings: Address where the Pattern buffer will start when it is enabled.

Pattern End Address

Function: Programs the ending address for the *Pattern* output buffer. There are 32767 address locations.

Type: unsigned binary word (32-bit)

Data Range: Ch 1: 0x0002 0000 to 0x0003 FFFC; Ch 2: 0x0004 0000 to 0x0005 FFFC; Ch 3: 0x0006 0000 to 0x0007 FFFC; Ch 4: 0x0008 0000 to 0x0009 FFFC

Read/Write: R/W

Initialized Value: Ch 1: 0x0002 0000; Ch 2: 0x0004 0000; Ch 3: 0x0006 0000; Ch 4: 0x0008 0000;

Operational Settings: Address where the Pattern buffer will end when it is enabled. After the *DAC value* that is stored at this address is outputted, the buffer will jump back to the *Pattern Start Address*.

Pattern Number of Cycles

Function: Set the number of *Pattern* cycles for a channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0001 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When the Pattern buffer is enabled in burst mode, it will loop from the *Pattern Start Address* to the *Pattern End Address* the number of times that is set in this register.

Engineering Scaling Conversion Registers

The D/A Module Data, Voltage and Current Measurement registers can be programmed to be utilized as an IEEE 754 single-precision floatingpoint value or as a 32-bit integer value.

Enable Floating Point Mode

Function: Sets all channels for floating point mode or integer module.

Type: unsigned binary word (32-bit) Data Range: 0 or 1 Read/Write: R/W Initialized Value: 0 (Integer mode) Operational Settings: Set bit to 1 to *enable Floating Point* Mode and 0 for Integer Mode.

Floating Point Offset

Function: This register sets the floating-point offset to add to DA output.

Type: Single Precision Floating Point Value (IEEE-754) Data Range: N/A

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point examples.

Floating Point Scale

Function: This register sets the floating-point scale to multiple to the DA output.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: When changing the *Voltage Range* or *Current Range*, the *Floating Point Scale* needs to be adjusted in order for the *Wrap Voltage* and *Wrap Current* floating point representation to be scaled correctly.

Floating Point State

Function: Indicates whether the module's internal processing is converting the register values and internal values to the binary representation of the mode selected (Integer or Floating Point).

Type: unsigned binary word (32-bit)

Data Range: 0 to 1

Read/Write: R

Initialized Value: 0

Operational Settings: Indicates whether the module registers are in Integer (**0**) or Floating Point Mode (**1**). When the *Enable Floating Point Mode* is modified, the application must wait until this register's value matches the requested mode before changing the values of the configuration and control registers with the values in the units specified (Integer or Floating Point).

						Floa	ting P	oint S	tate						
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D

Background BIT Threshold Registers

The *Background BIT Threshold* register provides the ability to specify the *minimum* time before the BIT fault is reported in the *BIT Status* registers. The *Reset BIT* register provides the ability to reset the BIT counter used in CBIT.

Background BIT Threshold

Function: Sets BIT Threshold value (in milliseconds) to use for all channels for BIT failure indication.

Type: unsigned binary word (32-bit)

Data Range: 1 ms to 2^32 ms

Read/Write: R/W

Initialized Value: 0x5 (5ms)

Operational Settings: The interval at which BIT is performed is dependent and differs between module types. Rather than specifying the BIT Threshold as a "count", the BIT Threshold is specified as a time in milliseconds. The module will convert the time specified to the BIT Threshold "count" based on the BIT interval for that module.

Reset BIT

Function: Resets the CBIT internal circuitry and count mechanism. Set the bit corresponding to the channel you want to clear.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: W

Initialized Value: 0

Operational Settings: Set bit to **1** for channel to resets the CBIT mechanisms. Bit is self-clearing.

							Rese	t BIT							
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

Watchdog Timer Registers

Refer to "Watchdog Timer Module Manual" for the Watchdog Timer Register Descriptions.

Status and Interrupt Registers

The DA4 Module provides status registers for BIT, Overcurrent, External Power Under Voltage, Inter-FPGA Failure, and FIFO.

Channel Status Enabled

Function: Determines whether to update the status for the channels. This feature can be used to "mask" status bits of unused channels in status registers that are bitmapped by channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F (Channel Status)

Read/Write: R/W

Initialized Value: 0x0000 000F

Operational Settings: When the bit corresponding to a given channel in the Channel Status Enabled register is not enabled (**0**) the status will be masked and report "0" or "no failure". This applies to all statuses that are bitmapped by channel (BIT Status, Overcurrent Status and Summary Status). Note, Background BIT will continue to run even if the Channel Status Enabled is set to '0'.

						Char	nnel Sta	tus Ena	bled						
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

BIT Status

There are four registers associated with the BIT Status: *Dynamic, Latched, Interrupt Enable,* and *Set Edge/Level Interrupt.* The *BIT Status* register will indicate an error when the D/A conversion is outside 0.2% FS accuracy spec.

						Bľ	T Dynar	nic Stat	us						
						B	T Latch	ed Stati	us						
						Bľ	T Interru	upt Enal	ole						
	BIT Interrupt Enable BIT Set Edge/Level Interrupt														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

Function: Sets the corresponding bit associated with the channel's BIT error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Notes: BIT Status is part of background testing and the status register may be checked or polled at any given time.

Overcurrent Status

There are four registers associated with the Overcurrent Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

						Overcu	irrent D	ynamic	Status						
						Overc	urrent L	atched	Status						
						Overcu	irrent In	terrupt	Enable						
					Ove	ercurrer	nt Set Eo	dge/Lev	el Interr	upt					
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

Function: Sets the corresponding bit associated with the channel's Overcurrent error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

External Power Under Voltage

There are four registers associated with the External Power Under Voltage Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

D0 = +12V External Power Under Voltage

D1 = -12V External Power Under Voltage

	External Power Under Voltage Dynamic Status														
	External Power Under Voltage Latched Status														
	External Power Under Voltage Interrupt Enable														
	External Power Under Voltage Set Edge/Level Interrupt														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	-12V	+12V

Function: Sets the corresponding bit associated with the channel's External Power Under Voltage error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0003

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Inter-FPGA Failure Status/Watchdog Timer Fault

Data is periodically transferred between the processing module and functional module within the FPGA. A CRC value is calculated and verified with each data transfer. In order to recover from an Inter-FPGA Failure, the module needs to be reset and re-initialized.

There are four registers associated with the Inter-FPGA Status/Watchdog Timer Fault: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

The lower 16-bits represent the Inter-FPGA Failure Status: **0** = Normal; **0x000F** = Inter-FPGA Communication Failure. The status represents the status for all channels on the module.

Bit 31 represents the Watchdog Timer Fault: 0 = Normal; 1 = Watchdog Timer Fault.

	Inter-FPGA Failure/Watchdog Timer Fault Dynamic Status														
	Inter-FPGA Failure/Watchdog Timer Fault Latched Status														
				Inter-F	PGA Fa	ilure/W	atchdog	Timer	Fault Int	terrupt	Enable				
	Inter-FPGA Failure/Watchdog Timer Fault Set Edge/Level Interrupt														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0														
0	0	0	0	0	0	0	0	0	0	0	0	D	D	D	D

Function: Sets the corresponding bit associated with the channel's Inter-FPGA Failure and Watchdog Timer Fault error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x8000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Summary Status

There are four registers associated with the Summary Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

					S	ummary	/ Status	Dynam	ic Statu	S					
					S	Summar	y Status	s Latche	d Statu	s					
					S	ummary	/ Status	Interru	pt Enab	le					
	Summary Status Set Edge/Level Interrupt														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	Ch4	Ch3	Ch2	Ch1

Function: Sets the corresponding bit when a fault is detected for BIT, Overcurrent, External Power Under Voltage or Inter-FPGA Failure on that channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

FIFO Status

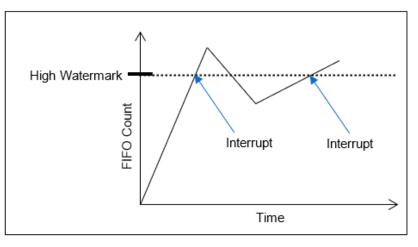
There are four registers associated with the FIFO Status: *Dynamic, Latched, Interrupt Enable,* and *Set Edge/Level Interrupt.* **D0-D5** is used to show the different conditions of the buffer.

Desc	ription	Configurable?
D0	Empty; 1 when FIFO Word Count = 0	No
D1	Almost Empty; 1 when FIFO Word Count <= "FIFO Almost Empty" register	Yes
D2	Low Watermark; 1 when FIFO Word Count <= "FIFO Low Watermark" register	Yes
D3	High Watermark; 1 when FIFO Word Count >= "FIFO High Watermark" register	Yes
D4	Almost Full; 1 when FIFO Word Count >= "FIFO Almost Full" register	Yes
D5	Full; 1 when FIFO Word Count = 32767 Words (0x0000 7FFF)	No

						FIFC	Dyna	mic St	atus						
						FIFC) Latcl	ned Sta	atus						
						FIFO	Interr	upt En	able						
	FIFO Set Edge/Level Interrupt														
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	D	D	D	D	D	D

Function: Sets the corresponding bit associated with the FIFO status type; there are separate registers for each channel. **Type:** unsigned binary word (32-bit)

Type: unsigned binary word (32-bit)


Data Range: 0x0000 0000 to 0x0000 003F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 1 (Empty)

Notes:

• Shown below is an example of interrupts generated for the High Watermark. As shown, the interrupt is generated as the FIFO Word Count crosses the High Watermark. The interrupt will not be generated a second time until the count goes below the watermark and then above it again.

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism.

In addition to specifying the interrupt vector, the interrupt can be directed ("steered") to the native bus or to the application running on the onboard ARM processor.

<u>Note</u>, the Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).

Interrupt Vector Function: Set an identifier for the interrupt. Type: unsigned binary word (32-bit) Data Range: 0 to 0xFFFF FFFF Read/Write: R/W Initialized Value: 0 Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering

Function: Sets where to direct the interrupt.

Type: unsigned binary word (32-bit)

Data Range: See table

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, the interrupt is sent as specified:

Direct Interrupt to VME	1
Direct Interrupt to ARM Processor (via SerDes)	2
(Custom App on ARM or NAI Ethernet Listener App)	
Direct Interrupt to PCIe Bus	5
Direct Interrupt to cPCI Bus	6

FUNCTION REGISTER MAP

Key: Bold Italic = Configuration/Control

Bold Underline = Measurement/Status

*When an event is detected, the bit associated with the event is set in this register and will remain set until the user clears the event bit. Clearing the bit requires writing a 1 back to the specific bit that was set when read (i.e. write-1-to-clear, writing a '1' to a bit set to '1' will set the bit to '0').

- ** Data is available in Floating Point if Enable Floating Point Mode register is set to Floating Point Mode.
- ~ Data is always in Floating Point.

D/A Output Registers

0x2004	DAC Value Ch 1**	R/W
0x2104	DAC Value Ch 2**	R/W
0x2204	DAC Value Ch 3**	R/W
0x2304	DAC Value Ch 4**	R/W

D/A Control Registers

0x2000	Voltage Range Ch 1	R/W
0x2100	Voltage Range Ch 2	R/W
0x2200	Voltage Range Ch 3	R/W
0x2300	Voltage Range Ch 4	R/W

0x0250	Power Enable Ch 1-4	R/W	0x2048	Overcurrent Value Ch 1	R/W
0x100C	Update Rate Ch 1-4	R/W	0x2148	Overcurrent Value Ch 2	R/W
0x1010	Overcurrent Reset Ch 1-4	R/W	0x2248	Overcurrent Value Ch 3	R/W
			0x2348	Overcurrent Value Ch 4	R/W

D/A Measurement Registers

0x2008	Wrap Voltage Ch 1**	R	0x200C	Wrap Current Ch 1**	R
0x2108	Wrap Voltage Ch 2**	R	0x210C	Wrap Current Ch 2**	R
0x2208	Wrap Voltage Ch 3**	R	0x220C	Wrap Current Ch 3**	R
0x2308	Wrap Voltage Ch 4**	R	0x230C	Wrap Current Ch 4**	R

FIFO/RAM Registers

FIFO/RAM Controls

0x1004	Data Mode Ch 1-4	R/W
0x1008	RAM/FIFO Mode Ch 1-4	R/W

FIFO

0x2018	FIFO Buffer Data Ch 1**	W
0x2118	FIFO Buffer Data Ch 2**	W
0x2218	FIFO Buffer Data Ch 3**	W
0x2318	FIFO Buffer Data Ch 4**	W

0x2010	Clear FIFO Ch 1	W
0x2110	Clear FIFO Ch 2	W
0x2210	Clear FIFO Ch 3	W
0x2310	Clear FIFO Ch 4	W

0x201C	FIFO Word Count Ch 1	R
0x211C	FIFO Word Count Ch 2	R
0x221C	FIFO Word Count Ch 3	R
0x231C	FIFO Word Count Ch 4	R
0x2014	FIFO Software Trigger Ch 1	W
0x2114	FIFO Software Trigger Ch 2	W
0x2214	FIFO Software Trigger Ch 3	W
0x2314	FIFO Software Trigger Ch 4	W

FIFO Thresholds

0x2020	FIFO Almost Empty Value Ch 1	R/W	Γ	0x2024	FIFO Low Watermark Value Ch 1	R/W
0x2120	FIFO Almost Empty Value Ch 2	R/W		0x2124	FIFO Low Watermark Value Ch 2	R/W
0x2220	FIFO Almost Empty Value Ch 3	R/W		0x2224	FIFO Low Watermark Value Ch 3	R/W
0x2320	FIFO Almost Empty Value Ch 4	R/W		0x2324	FIFO Low Watermark Value Ch 4	R/W
0x2028	FIFO High Watermark Value Ch 1	R/W		0x202C	FIFO Almost Full Value Ch 1	R/W
0x2128	FIFO High Watermark Value Ch 2	R/W		0x212C	FIFO Almost Full Value Ch 2	R/W
0x2228	FIFO High Watermark Value Ch 3	R/W		0x222C	FIFO Almost Full Value Ch 3	R/W
0x2328	FIFO High Watermark Value Ch 4	R/W		0x232C	FIFO Almost Full Value Ch 4	R/W

RAM

0x2030	Pattern Control Ch 1	R/W	0x2034	Pattern Start Address Ch 1	R/W
0x2130	Pattern Control Ch 2	R/W	0x2134	Pattern Start Address Ch 2	R/W
0x2230	Pattern Control Ch 3	R/W	0x2234	Pattern Start Address Ch 3	R/W
0x2330	Pattern Control Ch 4	R/W	0x2334	Pattern Start Address Ch 4	R/W
		D 444			D 444
0x2038	Pattern End Address Ch 1	R/W	0x203C	Pattern Number of Cycles Ch 1	R/W
0x2138	Pattern End Address Ch 2	R/W	0x213C	Pattern Number of Cycles Ch 2	R/W
0x2238	Pattern End Address Ch 3	R/W	0x223C	Pattern Number of Cycles Ch 3	R/W
0x2338	Pattern End Address Ch 4	R/W	0x233C	Pattern Number of Cycles Ch 4	R/W

V
V
V
V
v

Engineering Scaling Conversion Registers

0x02B4	Enable Floating Point	R/W
0x0264	Floating Point State	R

0x2050	Floating Point Offset Ch 1~	R/W	0x2054	Floating Point Scale Ch 1~	R/W
0x2150	Floating Point Offset Ch 2~	R/W	0x2154	Floating Point Scale Ch 2~	R/W
0x2250	Floating Point Offset Ch 3~	R/W	0x2254	Floating Point Scale Ch 3 [~]	R/W
0x2350	Floating Point Offset Ch 4~	R/W	0x2354	Floating Point Scale Ch 4~	R/W

Watchdog Timer Registers

The D/A Modules provide registers that support Watchdog Timer capability. Refer to "Watchdog Timer Module Manual" for the Watchdog Timer Function Register Map.

D/A Status Registers

0x02B0 C	Channel Status Enabled	R/W	
----------	------------------------	-----	--

BIT Registers

BIT

0x0800	Dynamic Status	R
0x0804	Latched Status*	R/W
0x0808	Interrupt Enable	R/W
0x080C	Set Edge/Level Interrupt	R/W
0x0248	Test Enabled	R/W
0x02B8	Background BIT Threshold	R/W
0x02BC	Reset BIT	W
	•	

 Ox02AC
 Power-on BIT Complete⁺⁺
 R

 ++After power-on, Power-on BIT Complete should be checked before reading the BIT Latched Status.

Status Registers

Overcurrent

0x0910	Dynamic Status	R
0x0914	Latched Status*	R/W
0x0918	Interrupt Enable	R/W
0x091C	Set Edge/Level Interrupt	R/W

External Power Under Voltage

0x0930	Dynamic Status	R
0x0934	Latched Status*	R/W
0x0939	Interrupt Enable	R/W
0x093C	Set Edge/Level Interrupt	R/W

Watchdog Timer Fault/Inter-FPGA Failure

0x09B0	Dynamic Status	R
0x09B4	Latched Status*	R/W
0x09B8	Interrupt Enable	R/W
0x09BC	Set Edge/Level Interrupt	R/W

Summary

0x09A0	Dynamic Status	R
0x09A4	Latched Status*	R/W
0x09A8	Interrupt Enable	R/W
0x09AC	Set Edge/Level Interrupt	R/W

FIFO Status

	0x0810	Dynamic Status	R		0x0830	Dynamic Status	R
Ch 1	0x0814	Latched Status*	R/W	Ī	0x0834	Latched Status*	R/W
	0x0818	Interrupt Enable	R/W	Ch 3	0x0838	Interrupt Enable	R/W
	0x081C	Set Edge/Level Interrupt	R/W		0x083C	Set Edge/Level Interrupt	R/W
	0x0820	Dynamic Status	R		0x0840	Dynamic Status	R
	0x0824	Latched Status*	R/W		0x0844	Latched Status*	R/W
Ch 2	0x0828	Interrupt Enable	R/W	Ch 4	0x0848	Interrupt Enable	R/W
	0x082C	Set Edge/Level Interrupt	R/W		0x084C	Set Edge/Level Interrupt	R/W

Interrupt Registers

The Interrupt Vector and Interrupt Steering registers are located on the Motherboard Memory Space and do not require any Module Address Offsets. These registers are accessed using the absolute addresses listed in the table below.

0x0500	Module 1 Interrupt Vector 1 - BIT	R/W
0x0504	Module 1 Interrupt Vector 2 - FIFO Ch 1	R/W
0x0508	Module 1 Interrupt Vector 3 - FIFO Ch 2	R/W
0x050C	Module 1 Interrupt Vector 4 - FIFO Ch 3	R/W
0x0510	Module 1 Interrupt Vector 5 - FIFO Ch 4	R/W
0x0514	Module 1 Interrupt Vector 6-17 - Reserved	R/W
to		
0x0540		
0x0544	Module 1 Interrupt Vector 18 - Overcurrent	R/W
0x0548	Module 1 Interrupt Vector 19 - Reserved	R/W
0x054C	Module 1 Interrupt Vector 20 – External	R/W
	Power Under Voltage	
0x0550	Module 1 Interrupt Vector 21-26 - Reserved	R/W
to		
0x0564		
0x0568	Module 1 Interrupt Vector 27 - Summary	R/W
0x056C	Module 1 Interrupt Vector 28 – Watchdog	R/W
	Timer/Inter-FPGA	
0x0570	Module 1 Interrupt Vector 29-32 - Reserved	R/W
to		
0x057C		

0x0600	Module 1 Interrupt Steering 1 - BIT	R/W
0x0604	Module 1 Interrupt Steering 2 - FIFO Ch 1	R/W
0x0608	Module 1 Interrupt Steering 3 - FIFO Ch 2	R/W
0x060C	Module 1 Interrupt Steering 4 - FIFO Ch 3	R/W
0x0610	Module 1 Interrupt Steering 5 - FIFO Ch 4	R/W
0x0614	Module 1 Interrupt Steering 6-17 - Reserved	R/W
to		
0x0640		
0x0644	Module 1 Interrupt Steering 18 - Overcurrent	R/W
0x0648	Module 1 Interrupt Steering 19 - Reserved	R/W
0x064C	Module 1 Interrupt Steering 20 – External	R/W
	Power Under Voltage	
0x0650	Module 1 Interrupt Steering 21-26 -	R/W
to	Reserved	
0x0664		
0x0668	Module 1 Interrupt Steering 27 - Summary	R/W
0x066C	Module 1 Interrupt Steering 28 – Watchdog	R/W
	Timer/Inter-FPGA	
0x0670	Module 1 Interrupt Steering 29-32 -	R/W
to	Reserved	
0x067C		

0x0700	Module 2 Interrupt Vector 1 - BIT	R/W
0x0704	Module 2 Interrupt Vector 2 - FIFO Ch 1	R/W
0x0708	Module 2 Interrupt Vector 3 - FIFO Ch 2	R/W
0x070C	Module 2 Interrupt Vector 4 - FIFO Ch 3	R/W
0x0710	Module 2 Interrupt Vector 5 - FIFO Ch 4	R/W
0x0714	Module 2 Interrupt Vector 6-17 - Reserved	R/W
to		
0x0740		
0x0744	Module 2 Interrupt Vector 18 - Overcurrent	R/W
0x0748	Module 2 Interrupt Vector 19 - Reserved	R/W
0x074C	Module 2 Interrupt Vector 20 – External	R/W
	Power Under Voltage	
0x0750	Module 2 Interrupt Vector 21-26 - Reserved	R/W
to		
0x0764		
0x0768	Module 2 Interrupt Vector 27 - Summary	R/W
0x076C	Module 2 Interrupt Vector 28 – Watchdog	R/W
	Timer/Inter-FPGA	
0x0770	Module 2 Interrupt Vector 29-32 - Reserved	R/W
to		
0x077C		

0x0800	Module 2 Interrupt Steering 1 - BIT	R/W
0x0804	Module 2 Interrupt Steering 2 - FIFO Ch 1	R/W
0x0808	Module 2 Interrupt Steering 3 - FIFO Ch 2	R/W
0x080C	Module 2 Interrupt Steering 4 - FIFO Ch 3	R/W
0x0810	Module 2 Interrupt Steering 5 - FIFO Ch 4	R/W
0x0814	Module 2 Interrupt Steering 6-17 - Reserved	R/W
to		
0x0840		
0x0844	Module 2 Interrupt Steering 18 - Overcurrent	R/W
0x0848	Module 2 Interrupt Steering 19 - Reserved	R/W
0x084C	Module 2 Interrupt Steering 20 – External	R/W
	Power Under Voltage	
0x0850	Module 2 Interrupt Steering 21-26 -	R/W
to	Reserved	
0x0864		
0x0868	Module 2 Interrupt Steering 27 - Summary	R/W
0x086C	Module 2 Interrupt Steering 28 – Watchdog	R/W
	Timer/Inter-FPGA	
0x0870	Module 2 Interrupt Steering 29-32 -	R/W
to	Reserved	
0x087C		

R/W

R/W R/W

R/W

R/W R/W

R/W

R/W R/W

R/W R/W

0x0900	Module 3 Interrupt Vector 1 - BIT	R/W
0x0904	Module 3 Interrupt Vector 2 - FIFO Ch 1	R/W
0x0908	Module 3 Interrupt Vector 3 - FIFO Ch 2	R/W
0x090C	Module 3 Interrupt Vector 4 - FIFO Ch 3	R/W
0x0910	Module 3 Interrupt Vector 5 - FIFO Ch 4	R/W
0x0914	Module 3 Interrupt Vector 6-17 - Reserved	R/W
to		
0x0940		
0x0944	Module 3 Interrupt Vector 18 - Overcurrent	R/W
0x0948	Module 3 Interrupt Vector 19 - Reserved	R/W
0x094C	Module 3 Interrupt Vector 20 – External	R/W
	Power Under Voltage	
0x0950	Module 3 Interrupt Vector 21-26 - Reserved	R/W
to		
0x0964		
0x0968	Module 3 Interrupt Vector 27 - Summary	R/W
0x096C	Module 3 Interrupt Vector 28 – Watchdog	R/W
	Timer/Inter-FPGA	
0x0970	Module 3 Interrupt Vector 29-32 - Reserved	R/W
to		
0x097C		

Module 3 Interrupt Steering 1 - BIT	R/W
Module 3 Interrupt Steering 2 - FIFO Ch 1	R/W
Module 3 Interrupt Steering 3 - FIFO Ch 2	R/W
Module 3 Interrupt Steering 4 - FIFO Ch 3	R/W
Module 3 Interrupt Steering 5 - FIFO Ch 4	R/W
Module 3 Interrupt Steering 6-17 - Reserved	R/W
Module 3 Interrupt Steering 18 - Overcurrent	R/W
Module 3 Interrupt Steering 19 - Reserved	R/W
Module 3 Interrupt Steering 20 – External	R/W
Power Under Voltage	
Module 3 Interrupt Steering 21-26 -	R/W
Reserved	
Module 3 Interrupt Steering 27 - Summary	R/W
Module 3 Interrupt Steering 28 – Watchdog	R/W
Timer/Inter-FPGA	
Module 3 Interrupt Steering 29-32 -	R/W
Reserved	
	Module 3 Interrupt Steering 2 - FIFO Ch 1Module 3 Interrupt Steering 3 - FIFO Ch 2Module 3 Interrupt Steering 4 - FIFO Ch 3Module 3 Interrupt Steering 5 - FIFO Ch 4Module 3 Interrupt Steering 6-17 - ReservedModule 3 Interrupt Steering 18 - OvercurrentModule 3 Interrupt Steering 19 - ReservedModule 3 Interrupt Steering 20 - ExternalPower Under VoltageModule 3 Interrupt Steering 21-26 -ReservedModule 3 Interrupt Steering 27 - SummaryModule 3 Interrupt Steering 28 - WatchdogTimer/Inter-FPGAModule 3 Interrupt Steering 29-32 -

0x0B00	Module 4 Interrupt Vector 1 - BIT	R/W		0x0C00	Module 4 Interrupt Steering 1 - BIT
0x0B04	Module 4 Interrupt Vector 2 - FIFO Ch 1	R/W		0x0C04	Module 4 Interrupt Steering 2 - FIFO Ch 1
0x0B08	Module 4 Interrupt Vector 3 - FIFO Ch 2	R/W		0x0C08	Module 4 Interrupt Steering 3 - FIFO Ch 2
0x0B0C	Module 4 Interrupt Vector 4 - FIFO Ch 3	R/W		0x0C0C	Module 4 Interrupt Steering 4 - FIFO Ch 3
0x0B10	Module 4 Interrupt Vector 5 - FIFO Ch 4	R/W		0x0C10	Module 4 Interrupt Steering 5 - FIFO Ch 4
0x0B14	Module 4 Interrupt Vector 6-17 - Reserved	R/W		0x0C14	Module 4 Interrupt Steering 6-17 - Reserved
to				to	
0x0B40				0x0C40	
0x0B44	Module 4 Interrupt Vector 18 - Overcurrent	R/W		0x0C44	Module 4 Interrupt Steering 18 - Overcurrent
0x0B48	Module 4 Interrupt Vector 19 - Reserved	R/W		0x0C48	Module 4 Interrupt Steering 19 - Reserved
0x0B4C	Module 4 Interrupt Vector 20 – External	R/W	1.	0x0C4C	Module 4 Interrupt Steering 20 – External
	Power Under Voltage				Power Under Voltage
0x0B50	Module 4 Interrupt Vector 21-26 - Reserved	R/W	1	0x0C50	Module 4 Interrupt Steering 21-26 -
to				to	Reserved
0x0B64				0x0C64	
0x0B68	Module 4 Interrupt Vector 27 - Summary	R/W		0x0C68	Module 4 Interrupt Steering 27 - Summary
0x0B6C	Module 4 Interrupt Vector 28 – Watchdog	R/W	1.	0x0C6C	Module 4 Interrupt Steering 28 – Watchdog
	Timer/Inter-FPGA				Timer/Inter-FPGA
0x0B70	Module 4 Interrupt Vector 29-32 - Reserved	R/W	1	0x0C70	Module 4 Interrupt Steering 29-32 -
to				to	Reserved
0x0B7C				0x0C7C	

R/W R/W R/W R/W R/W

R/W R/W R/W

R/W R/W R/W

0x0D00	Module 5 Interrupt Vector 1 - BIT	R/W
0x0D04	Module 5 Interrupt Vector 2 - FIFO Ch 1	R/W
0x0D08	Module 5 Interrupt Vector 3 - FIFO Ch 2	R/W
0x0D0C	Module 5 Interrupt Vector 4 - FIFO Ch 3	R/W
0x0D10	Module 5 Interrupt Vector 5 - FIFO Ch 4	R/W
0x0D14	Module 5 Interrupt Vector 6-17 - Reserved	R/W
to		
0x0D40		
0x0D44	Module 5 Interrupt Vector 18 - Overcurrent	R/W
0x0D48	Module 5 Interrupt Vector 19 - Reserved	R/W
0x0D4C	Module 5 Interrupt Vector 20 – External	R/W
	Power Under Voltage	
0x0D50	Module 5 Interrupt Vector 21-26 - Reserved	R/W
to		
0x0D64		
0x0D68	Module 5 Interrupt Vector 27 - Summary	R/W
0x0D6C	Module 5 Interrupt Vector 28 – Watchdog	R/W
	Timer/Inter-FPGA	
0x0D70	Module 5 Interrupt Vector 29-32 - Reserved	R/W
to		
0x0D7C		

0x0E00	Module 5 Interrupt Steering 1 - BIT	R/W
0x0E04	Module 5 Interrupt Steering 2 - FIFO Ch 1	R/W
0x0E08	Module 5 Interrupt Steering 3 - FIFO Ch 2	R/W
0x0E0C	Module 5 Interrupt Steering 4 - FIFO Ch 3	R/W
0x0E10	Module 5 Interrupt Steering 5 - FIFO Ch 4	R/W
0x0E14	Module 5 Interrupt Steering 6-17 - Reserved	R/W
to		
0x0E40		
0x0E44	Module 5 Interrupt Steering 18 - Overcurrent	R/W
0x0E48	Module 5 Interrupt Steering 19 - Reserved	R/W
0x0E4C	Module 5 Interrupt Steering 20 – External	R/W
	Power Under Voltage	
0x0E50	Module 5 Interrupt Steering 21-26 -	R/W
to	Reserved	
0x0E64		
0x0E68	Module 5 Interrupt Steering 27 - Summary	R/W
0x0E6C	Module 5 Interrupt Steering 28 – Watchdog	R/W
	Timer/Inter-FPGA	
0x0E70	Module 5 Interrupt Steering 29-32 -	R/W
to	Reserved	
0x0E7C		

0x0F00	Module 6 Interrupt Vector 1 - BIT	R/W		0x1000	Module 6 Interrupt Steering 1 - BIT
0x0F04	Module 6 Interrupt Vector 2 - FIFO Ch 1	R/W		0x1004	Module 6 Interrupt Steering 2 - FIFO Ch 1
0x0F08	Module 6 Interrupt Vector 3 - FIFO Ch 2	R/W		0x1008	Module 6 Interrupt Steering 3 - FIFO Ch 2
0x0F0C	Module 6 Interrupt Vector 4 - FIFO Ch 3	R/W		0x100C	Module 6 Interrupt Steering 4 - FIFO Ch 3
0x0F10	Module 6 Interrupt Vector 5 - FIFO Ch 4	R/W		0x1010	Module 6 Interrupt Steering 5 - FIFO Ch 4
0x0F14	Module 6 Interrupt Vector 6-17 - Reserved	R/W		0x1014	Module 6 Interrupt Steering 6-17 - Reserved
to				to	
0x0F40				0x1040	
0x0F44	Module 6 Interrupt Vector 18 - Overcurrent	R/W		0x1044	Module 6 Interrupt Steering 18 - Overcurrent
0x0F48	Module 6 Interrupt Vector 19 - Reserved	R/W		0x1048	Module 6 Interrupt Steering 19 - Reserved
0x0F4C	Module 6 Interrupt Vector 20 – External	R/W		0x104C	Module 6 Interrupt Steering 20 – External
	Power Under Voltage				Power Under Voltage
0x0F50	Module 6 Interrupt Vector 21-26 - Reserved	R/W		0x1050	Module 6 Interrupt Steering 21-26 -
to				to	Reserved
0x0F64				0x1064	
0x0F68	Module 6 Interrupt Vector 27 - Summary	R/W		0x1068	Module 6 Interrupt Steering 27 - Summary
0x0F6C	Module 6 Interrupt Vector 28 – Watchdog	R/W		0x106C	Module 6 Interrupt Steering 28 – Watchdog
	Timer/Inter-FPGA				Timer/Inter-FPGA
0x0F70	Module 6 Interrupt Vector 29-32 - Reserved	R/W	1	0x1070	Module 6 Interrupt Steering 29-32 -
to				to	Reserved
0x0F7C				0x107C	
0x0F7C				0x107C	

APPENDIX A: INTEGER/FLOATING POINT MODE PROGRAMMING

Integer Mode Programming

The following registers should be configured as follows:

Register	Value	Description
Voltage Range	0x3	±50 volts
Enable Floating Point	0	Disable for Floating Point Mode

Note: LSB for Bipolar ±50-volt range:

LSB = 40/0x00007FFF

= 40/32767=1525uV

DAC Value (Integer)	DAC Voltage Output
1.000 of FS = 0x0000 7FFF	32767 * LSB = 50.0 volts
0.5 of FS = 0x0000 4000	16384 * LSB = 25.0 volts
0.0 of FS = 0x0000 0000	0 * LSB = 0.0 volts
-0.5 of FS = 0xFFFF C000	-16384 * LSB = -25.0 volts
-1.0 of FS = 0xFFFF 8000	-32768 * LSB = -50.0 volts

Floating Point Mode Voltage Programming

The following registers should be configured as follows:

Register	Value	Description
Voltage Range	0x3	±50 volts
Enable Floating Point	1	Enable for Floating Point Mode
Floating Point Scale	0.05	Scale = 1 / (Full Range)
		= 1 / 50.0 = 0.02
Floating Point Offset	0.0	No Offset

Note: LSB for Bipolar ±50-volt range:

LSB = 50/0x00007FFF

= 50/32767=1525uV

DAC Value (volts) (Floating Point)	DAC Value (Calculated by Module)	DAC Value (Integer)	DAC Voltage Output
50.0	(50.0 + 0.0) * 0.02 = 1 (FS)	FS = 0x0000 7FFF	32767 * LSB = 50.0 volts
25.0	(25.0 + 0.0) * 0.02 = 0.5 of FS	0.5 of FS = 0x0000 4000	16384 * LSB = 25.0 volts
0.0	(0.0 + 0.0) * 0.02 = 0.0 of FS	0.0 of FS = 0x0000 0000	0 * LSB = 0.0 volts
-25.0	(-25.0 + 0.0) * 0.02 = -0.5 of FS	-0.5 of FS = 0xFFFF C000	-16384 * LSB = -25.0 volts
-50.0	(-50.0 + 0.0) * 0.02 = -1 (-FS)	-1.0 of FS = 0xFFFF 8000	-32768 * LSB = -50.0 volts

Floating Point Mode Engineering Units Programming

Example #1:

An application wants to associate -50 to 50 volts to -5 to 5 inches.

The following registers should be configured as follows:

Register	Value	Description
Voltage Range	0x3	±50 volts
Enable Floating Point	1	Enable for Floating Point Mode
Floating Point Scale	0.2	Scale = 1 / inches range
		= 1 / 5 inches = 0.2
Floating Point Offset	0.0	No Offset

Note: LSB for Bipolar ±50-volt range:

LSB = 50/0x00007FFF

= 50/32767=1220uV

DAC Value (in)	DAC Value	DAC Value	DAC Voltage Output
(Floating Point)	(Calculated by Module)	(Integer)	
5.0	(5.0 + 0.0) * 0.2 = 1 (FS)	FS = 0x0000 7FFF	32767 * LSB = 50.0 volts
2.5	(2.5 + 0.0) * 0.2 = 0.5 FS	0.5 of FS = 0x0000 4000	16384 * LSB = 25.0 volts
0.0	(0.0 + 0.0) * 0.2 = 0.0 FS	0.0 of FS = 0x0000 0000	0 * LSB = 0.0 volts
-2.5	(-2.5 + 0.0) * 0.2 = -0.5 FS	-0.5 of FS = 0xFFFF C000	-16384 * LSB = -25.0 volts
-5.0	(-5.0 + 0.0) * 0.2 = -1 (-FS)	-FS = 0xFFFF 8000	-32768 * LSB = -50.0 volts

Example #2:

An application wants to associate 0 to 50 volts to 0 to 50 feet with a bias of 0.5 feet (in other words 0.5 feet is equivalent to 0 volts).

The following registers should be configured as follows:

Register	Value	Description
Voltage Range	0x0	Unipolar 0-50 volts
Enable Floating Point	1	Enable for Floating Point Mode
Floating Point Scale	0.02	Scale = 1 / feet range
		= 1 / 50 = 0.02
Floating Point Offset	-0.50	Bias (0.5 feet) that is equivalent to 0 volts

The following are sample outputs:

Note: LSB for Unipolar 50-volt range:

LSB = 50/0x0000FFFF

= 50/65535=763uV

DAC Value (ft) (Floating Point)	DAC Value (Calculated by Module)	DAC Value (Integer)	DAC Voltage Output
50.00	(50.00 - 0.50) * 0.02 = 0.99 of FS	0.99 of FS = 0x0000 FD70	64880 * LSB = 49.50 volts
25.00	(25.00 - 0.50) * 0.02 = 0.49 of FS	0.49 of FS = 0x0000 7D70	32112 * LSB = 24.50 volts
5.50	(5.50 - 0.50) * 0.02 = 0.10 of FS	0.10 of FS = 0x0000 199A	6554 * LSB = 5.00 volts
0.50	(0.50 - 0.50) * 0.02 = 0.00 of FS	0.00 of FS = 0x0000 0000	0 * LSB = 0.0 volts

APPENDIX B: PIN-OUT DETAILS

Pin-out details (for reference) are shown below, with respect to DATAIO. Additional information on pin-outs can be found in the Motherboard Operational Manuals.

Module Signal (Ref Only)	DA-HI-VOLT (DA4)
DATIO1	
DATIO2	
DATIO3	SENSE-H_CH1
DATIO4	SENSE-L_CH1
DATIO5	OUT-H_CH1
DATIO6	OUT-L CH1
DATIO7	EXT-SYNC_P*
DATIO8	EXT-SYNC_N*
DATIO9	SENSE-H_CH2
DATIO10	SENSE-L_CH2
DATIO11	OUT-H_CH2
DATIO12	OUT-L_CH2
DATIO13	
DATIO14	
DATIO15	SENSE-H_CH3
DATIO16	SENSE-L_CH3
DATIO17	OUT-H_CH3
DATIO18	OUT-L_CH3
DATIO19	
DATIO20	
DATIO21	SENSE-H_CH4
DATIO22	SENSE-L_CH4
DATIO23	OUT-H_CH4
DATIO24	OUT-L_CH4
DATIO25	
DATIO26	
DATIO27	
DATIO28	
DATIO29	
DATIO30	
DATIO31	
DATIO32	
DATIO33	
DATIO34	
DATIO35	
DATIO36	
DATIO37	
DATIO38	
DATIO39 DATIO40	
N/A	

Notes

Pending external clock/trigger mode feature - contact factory for application use and availability

Status and Interrupts

MODULE MANUAL

STATUS AND INTERRUPTS

Status registers indicate the detection of faults or events. The status registers can be channel bit-mapped or event bit-mapped. An example of a channel bit-mapped register is the BIT status register, and an example of an event bit-mapped register is the FIFO status register.

For those status registers that allow interrupts to be generated upon the detection of the fault or the event, there are four registers associated with each status: *Dynamic, Latched, Interrupt Enabled*, and *Set Edge/Level Interrupt*.

Dynamic Status: The *Dynamic Status* register indicates the <u>current</u> condition of the fault or the event. If the fault or the event is momentary, the contents in this register will be clear when the fault or the event goes away. The *Dynamic Status* register can be polled, however, if the fault or the event is sporadic, it is possible for the indication of the fault or the event to be missed.

Latched Status: The Latched Status register indicates whether the fault or the event <u>has occurred</u> and keeps the state until it is cleared by the user. Reading the Latched Status register is a better alternative to polling the Dynamic Status register because the contents of this register will not clear until the user commands to clear the <u>specific</u> bit(s) associated with the fault or the event in the Latched Status register. Once the status register has been read, the act of writing a **1** back to the applicable status register to any specific bit (channel/event) location will "clear" the bit (set the bit to **0**). When clearing the channel/event bits, it is <u>strongly recommended</u> to write back the <u>same</u> bit pattern as read from the Latched Status register. For example, if the channel bit-mapped Latched Status register contains the value 0x0000 0005, which indicates fault/event detection on channel 1 and 3, write the value 0x0000 0005 to the Latched Status register to clear the fault/event status for channel 1 and 3. Writing a "1" to other channels that are not set (example 0x0000 000F) may result in incorrectly "clearing" incoming faults/events for those channels (example, channel 2 and 4).

Interrupt Enable: If interrupts are preferred upon the detection of a fault or an event, enable the specific channel/event interrupt in the *Interrupt Enable* register. The bits in *Interrupt Enable* register map to the same bits in the *Latched Status* register. When a fault or event occurs, an interrupt will be fired. Subsequent interrupts will not trigger until the application acknowledges the fired interrupt by clearing the associated channel/event bit in the *Latched Status* register. If the interruptible condition is still persistent after clearing the bit, this may retrigger the interrupt depending on the *Edge/Level* setting.

Set Edge/Level Interrupt: When interrupts are enabled, the condition on retriggering the interrupt <u>after</u> the Latch Register is "cleared" can be specified as "edge" triggered or "level" triggered. Note, the Edge/Level Trigger also affects how the Latched Register value is adjusted after it is "cleared" (see below).

- *Edge triggered*: An interrupt will be retriggered when the Latched Status register change from low (0) to high (1) state. Uses for edge-triggered interrupts would include transition detections (Low-to-High transitions, High-to-Low transitions) or fault detections. After "clearing" an interrupt, another interrupt will not occur until the next transition or the re-occurrence of the fault again.
- Level triggered: An interrupt will be generated when the Latched Status register remains at the high (1) state. Level-triggered interrupts are used to indicate that something needs attention.

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed with a unique number/identifier defined by the user such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed ("steered") to the native bus or to the application running on the onboard ARM processor.

Interrupt Trigger Types

In most applications, limiting the number of interrupts generated is preferred as interrupts are costly, thus choosing the correct Edge/Level interrupt trigger to use is important.

Example 1: Fault detection

This example illustrates interrupt considerations when detecting a fault like an "open" on a line. When an "open" is detected, the system will receive an interrupt. If the "open" on the line is <u>persistent</u> and the trigger is set to "edge", upon "clearing" the interrupt, the system <u>will not</u> regenerate another interrupt. If, instead, the trigger is set to "level", upon "clearing" the interrupt, the system will re-generate another interrupt. Thus, in this case, it will be better to set the trigger type to "edge".

Example 2: Threshold detection

This example illustrates interrupt considerations when detecting an event like reaching or exceeding the "high watermark" threshold value. In a communication device, when the number of elements received in the FIFO reaches the high-watermark threshold, an interrupt will be generated. Normally, the application would read the <u>count</u> of the number of elements in the FIFO and read this number of elements from the FIFO. After reading the FIFO data, the application would "clear" the interrupt. If the trigger type is set to "edge", another interrupt will be generated only if the number of elements in FIFO goes below the "high watermark" after the "clearing" the interrupt and then fills up to reach the "high watermark" threshold value. Since receiving communication data is inherently asynchronous, it is possible that data can continue to fill the FIFO as the application is pulling data off the FIFO. If, at the time the interrupt is "cleared", the number of elements in the FIFO is at or above the "high watermark" threshold value. Thus, upon "clearing" the interrupt, if the number of elements in the FIFO is at or above the "high watermark" threshold value, another interrupt will be generated indicating that the FIFO needs to be serviced.

Dynamic and Latched Status Registers Examples

The examples in this section illustrate the differences in behavior of the Dynamic Status and Latched Status registers as well as the differences in behavior of Edge/Level Trigger when the Latched Status register is cleared.

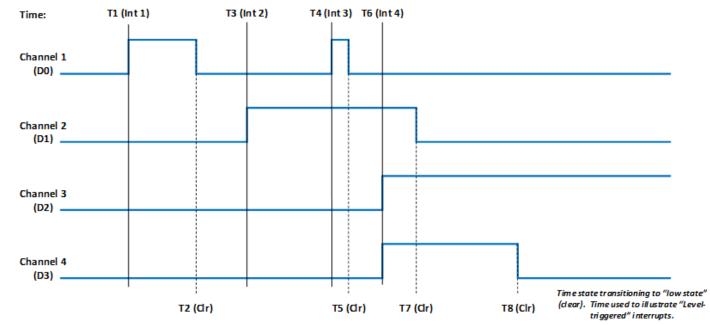


Figure 1. Example of Module's Channel-Mapped Dynamic and Latched Status States

		No Clearing of Latched Status	Clearing of Latched Si (Edge-Triggered)		Clearing of Latched St (Level-Triggered)	
Time	Dynamic Status	Latched Status	Action	Latched Status	Action	Latched
Т0	0x0	0x0	Read Latched Register	0x0	Read Latched Register	0x0
T1	0x1	0x1	Read Latched Register	0x1		0x1
			Write 0x1 to Latched Register		Write 0x1 to Latched Register	
				0x0		0x1
T2	0x0	0x1	Read Latched Register	0x0	Read Latched Register	0x1
			_		Write 0x1 to Latched Register	
						0x0
T3	0x2	0x3	Read Latched Register	0x2	Read Latched Register	0x2
			Write 0x2 to Latched Register		Write 0x2 to Latched Register	
				0x0		0x2
T4	0x2	0x3	Read Latched Register	0x1	Read Latched Register	0x3
			Write 0x1 to Latched Register		Write 0x3 to Latched Register	
				0x0		0x2
T5	0xC	0xF	Read Latched Register	0xC	Read Latched Register	0xE
			Write 0xC to Latched Register		Write 0xE to Latched Register	
				0x0		0xC
T6	0xC	0xF	Read Latched Register	0x0	Read Latched Register	0xC
					Write 0xC to Latched Register	
						0xC
T7	0x4	0xF	Read Latched Register	0x0	Read Latched Register	0xC
					Write 0xC to Latched Register	
						0x4
T8	0x4	0xF	Read Latched Register	0x0	Read Latched Register	0x4

Interrupt Examples

The examples in this section illustrate the interrupt behavior with Edge/Level Trigger.

Figure 2. Illustration of Latched Status State for Module with 4-Channels with Interrupt Enabled

	Latched Status (Edge-Triggered – Clear Multi-Channel)	Latched Status (Edge-Triggered – Clear Single Channe		Latched Status (Level-Triggered – Clear Multi-Channel)		
Time	Action Latche		Action Latched		Action	Latched
T1 (Int 1)	Interrupt Generated Read Latched Registers	0x1	Interrupt Generated Read Latched Registers	0x1	Interrupt Generated Read Latched Registers	0x1
	Write 0x1 to Latched Register		Write 0x1 to Latched Register		Write 0x1 to Latched Register	
		0x0		0x0	Interrupt re-triggers Note, interrupt re-triggers after each clear until T2.	0x1
T3 (Int 2)	Interrupt Generated Read Latched Registers	0x2	Interrupt Generated Read Latched Registers	0x2	Interrupt Generated Read Latched Registers	0x2
	Write 0x2 to Latched Register		Write 0x2 to Latched Register		Write 0x2 to Latched Register	
		0x0		0x0	Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.	0x2
T4 (Int 3)	Interrupt Generated Read Latched Registers	0x1	Interrupt Generated Read Latched Registers	0x1	Interrupt Generated Read Latched Registers	0x3
	Write 0x1 to Latched Register		Write 0x1 to Latched Register		Write 0x3 to Latched Register	
		0x0		0x0	Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x3 is reported in Latched Register until T5.	0x3
					Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.	0x2

	Latched Status (Edge-Triggered – Clear Multi-Channel)		Latched Status (Edge-Triggered – Clear Single Channel)		Latched Status (Level-Triggered – Clear Multi-Channel)	
Time	Action	Latched	Action	Latched	Action	Latched
T6 (Int 4)	Interrupt Generated Read Latched Registers	0xC	Interrupt Generated Read Latched Registers	0xC	Interrupt Generated Read Latched Registers	0xE
	Write 0xC to Latched Register		Write 0x4 to Latched Register		Write 0xE to Latched Register	
		0x0	Interrupt re-triggers Write 0x8 to Latched Register	0x8	Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xE is reported in Latched Register until T7.	0xE
				0x0	Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xC is reported in Latched Register until T8.	0xC
					Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x4 is reported in Latched Register always.	0x4

User Watchdog Timer

MODULE MANUAL

USER WATCHDOG TIMER MODULE MANUAL

User Watchdog Timer Capability

The User Watchdog Timer (UWDT) Capability is available on the following modules:

- AC Reference Source Modules
 - AC1 1 Channel, 2-115 Vrms, 47 Hz 20kHz
 - AC2 2 Channels, 2-28 Vrms, 47 Hz 20kHz
 - AC3 1 Channel, 28-115 Vrms, 47 Hz 2.5 kHz
- Differential Transceiver Modules
 - DF1/DF2 16 Channels Differential I/O
- Digital-to-Analog (D/A) Modules
 - DA1 12 Channels, ±10 VDC @ 25 mA, Voltage or Current Control Modes
 - DA2 16 Channels, ±10 VDC @ 10 mA
 - DA3 4 Channels, ±40 VDC @ ±100 mA, Voltage or Current Control Modes
 - DA4 4 Channels, ±80 VDC @ 10 mA
 - DA5 4 Channels, ±65 VDC or ±2 A, Voltage or Current Control Modes
- Digital-to-Synchro/Resolver (D/S) or Digital-to-L(R)VDT (D/LV) Modules

(Not supported)

- Discrete I/O Modules
 - DT1/DT4 24 Channels, Programmable for either input or output, output up to 500 mA per channel from an applied external 3 60 VCC source.
 - DT2/DT5 16 Channels, Programmable for either input voltage measurements (±80 V) or as a bi-directional current switch (up to 500 mA per channel).
 - DT3/DT6 4 Channels, Programmable for either input voltage measurements (±100 V) or as a bi-directional current switch (up to 3 A per channel).
- TTL/CMOS Modules
 - TL1-TL8 24 Channels, Programmable for either input or output.

Principle of Operation

The User Watchdog Timer is optionally activated by the applications that require the module's outputs to be disabled as a failsafe in the event of an application failure or crash. The circuit is designed such that a specific periodic write strobe pattern must be executed by the software to maintain operation and prevent the disablement from taking place.

The User Watchdog Timer is inactive until the application sends an initial strobe by writing the value 0x55AA to the *UWDT Strobe* register. After activating the User Watchdog Timer, the application must continually strobe the timer within the intervals specified with the configurable *UWDT Quiet Time* and *UWDT Window* registers. The timing of the strobes must be consistent with the following rules:

- The application must not strobe during the Quiet time.
- The application must strobe within the Window time.
- The application must not strobe more than once in a single window time.

A violation of any of these rules will trigger a User Watchdog Timer fault and result in shutting down any isolated power supplies and/or disabling any active drive outputs, as applicable for the specific module. Upon a User Watchdog Timer event, recovery to the module shutting down will require the module to be reset.

The Figure 1 and Figure 2 provides an overview and an example with actual values for the User Watchdog Timer Strobes, Quiet Time and Window. As depicted in the diagrams, there are two processes that run in parallel. The Strobe event starts the timer for the beginning of the "Quiet Time". The timer for the Previous Strobe event continues to run to ensure that no additional Strobes are received within the "Window" associated with the Previous Strobe.

The optimal target for the user watchdog strobes should be at the interval of [Quiet time + $\frac{1}{2}$ Window time] after the previous strobe, which will place the strobe in the center of the window. This affords the greatest margin of safety against unintended disablement in critical operations.

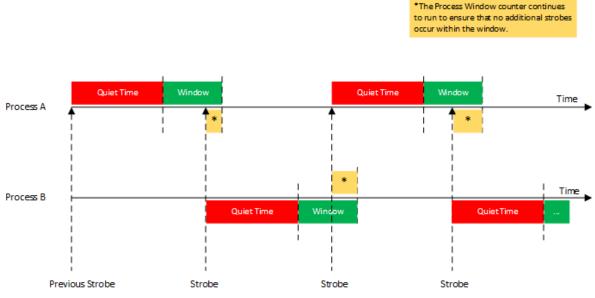


Figure 1. User Watchdog Timer Overview

Figure 2. User Watchdog Timer Example

Figure 3 illustrates examples of User Watchdog Timer failures.

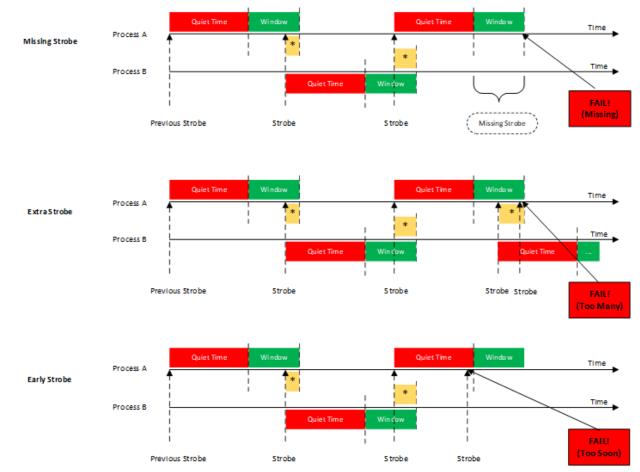


Figure 3. User Watchdog Timer Failures

Register Descriptions

The register descriptions provide the register name, Type, Data Range, Read or Write information, Initialized Value, and a description of the function.

User Watchdog Timer Registers

The registers associated with the User Watchdog Timer provide the ability to specify the *UWDT Quiet Time* and the *UWDT Window* that will be monitored to ensure that EXACTLY ONE User Watchdog Timer (UWDT) Strobe is written within the window.

UWDT Quiet Time

Function: Sets Quiet Time value (in microseconds) to use for the User Watchdog Timer Frame.

Type: unsigned binary word (32-bit)

Data Range: 0 µsec to 2^32 µsec (0x0 to 0xFFFFFFF)

Read/Write: R/W

Initialized Value: 0x0

Operational Settings: LSB = 1 µsec. The application must NOT write a strobe in the time between the previous strobe and the end of the Quiet time interval. In addition, the application must write in the *UWDT Window* EXACTLY ONCE.

UWDT Window

Function: Sets Window value (in microseconds) to use for the User Watchdog Timer Frame.

Type: unsigned binary word (32-bit)

Data Range: 0 µsec to 2^32 µsec (0x0 to 0xFFFFFFF)

Read/Write: R/W

Initialized Value: 0x0

Operational Settings: LSB = 1 µsec. The application must write the strobe once within the Window time after the end of the Quiet time interval. The application must write in the *UWDT Window* EXACTLY ONCE.

This setting must be initialized to a non-zero value for operation and should allow sufficient tolerance for strobe timing by the application.

UWDT Strobe

Function: Writes the strobe value to be use for the User Watchdog Timer Frame.

Type: unsigned binary word (32-bit)

Data Range: 0x55AA

Read/Write: W

Initialized Value: 0x0

Operational Settings: At startup, the user watchdog is disabled. Write the value of 0x55AA to this register to start the user watchdog timer monitoring after initial power on or a reset. To prevent a disablement, the application must periodically write the strobe based on the user watchdog timer rules.

Status and Interrupt

The modules that are capable of User Watchdog Timer support provide status registers for the User Watchdog Timer.

User Watchdog Timer Status

The status register that contains the User Watchdog Timer Fault information is also used to indicate channel Inter-FPGA failures on modules that have communication between FPGA components. There are four registers associated with the User Watchdog Timer Fault/Inter-FPGA Failure Status: *Dynamic, Latched, Interrupt Enable,* and *Set Edge/Level Interrupt*.

User Watchdog Timer Fault/Inter-FPGA Failure Dynamic Status							
	User Watchdog Timer Fault/Inter-FPGA Failure Latched Status						
	User Watchdog Timer Fault/Inter-FPGA Failure Interrupt Enable						
	User Watchdog Timer Fault/Inter-FPGA Failure Set Edge/Level Interrupt						
Bit(s)	Status	Description					
D31	User Watchdog Timer Fault Status	0 = No Fault					
		1 = User Watchdog Timer Fault					
D30:D0	Reserved for Inter-FPGA Failure Status	Channel bit-mapped indicating channel inter- FPGA communication failure detection.					

Function: Sets the corresponding bit (D31) associated with the channel's User Watchdog Timer Fault error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R (*Dynamic*), R/W (*Latched*, *Interrupt Enable*, *Edge/Level Interrupt*) **Initialized Value:** 0

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism.

In addition to specifying the interrupt vector, the interrupt can be directed ("steered") to the native bus or to the application running on the onboard ARM processor.

<u>Note</u>, the Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).

Interrupt Vector Function: Set an identifier for the interrupt. Type: unsigned binary word (32-bit) Data Range: 0x0000 0000 to 0xFFFF FFFF Read/Write: R/W Initialized Value: 0 Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering Function: Sets where to direct the interrupt. Type: unsigned binary word (32-bit) Data Range: See table Read/Write: R/W Initialized Value: 0 Operational Settings: When an interrupt occurs, the interrupt is sent as specified:

Direct Interrupt to VME	1
Direct Interrupt to ARM Processor (via SerDes)	2
(Custom App on ARM or NAI Ethernet Listener App)	
Direct Interrupt to PCIe Bus	5
Direct Interrupt to cPCI Bus	6

Function Register Map

Key: Bold Italic = Configuration/Control

Bold Underline = Status

*When an event is detected, the bit associated with the event is set in this register and will remain set until the user clears the event bit. Clearing the bit requires writing a 1 back to the specific bit that was set when read (i.e. write-1-to-clear, writing a '1' to a bit set to '1' will set the bit to '0').

User Watchdog Timer Registers

0x01C0	UWDT Quiet Time	R/W
0x01C4	UWDT Window	R/W
0x01C8	UWDT Strobe	W

Status Registers

User Watchdog Timer Fault/Inter-FPGA Failure

0x09B0	<u>Dynamic Status</u>	R
0x09B4	Latched Status*	R/W
0x09B8	Interrupt Enable	R/W
0x09BC	Set Edge/Level Interrupt	R/W

Interrupt Register

The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Memory Space and these addresses are absolute based on the module slot position. In other words, do not apply the Module Address offset to these addresses.

0x056C	Module 1 Interrupt Vector 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W	0x066C	Module 1 Interrupt Steering 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W
0x076C	Module 2 Interrupt Vector 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W	0x086C	Module 2 Interrupt Steering 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W
0x096C	Module 3 Interrupt Vector 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W	0x0A6C	Module 3 Interrupt Steering 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W
0x0B6C	Module 4 Interrupt Vector 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W	0x0C6C	Module 4 Interrupt Steering 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W
0x0D6C	Module 5 Interrupt Vector 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W	0x0E6C	Module 5 Interrupt Steering 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W
0x0F6C	Module 6 Interrupt Vector 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W	0x106C	Module 6 Interrupt Steering 28 – User Watchdog Timer Fault/Inter-FPGA Failure	R/W

NAI Cares

North Atlantic Industries (NAI) is a leading independent supplier of Embedded I/O Boards, Single Board Computers, Rugged Power Supplies, Embedded Systems and Motion Simulation and Measurement Instruments for the Military, Aerospace and Industrial Industries. We accelerate our clients' time-to-mission with a unique approach based on a Configurable Open Systems Architecture[™] (COSA®) that delivers the best of both worlds: custom solutions from standard COTS components.

We have built a reputation by listening to our customers, understanding their needs, and designing, testing and delivering board and system-level products for their most demanding air, land and sea requirements. If you have any applications or questions regarding the use of our products, please contact us for an expedient solution.

Please visit us at: www.naii.com or select one of the following for immediate assistance:

FAQ http://www.naii.com/faqs

Application Notes http://www.naii.com/applicationnotes

Calibration and Repairs http://www.naii.com/calibrationrepairs

Call Us (631) 567-1100

__Accelerate Your Time-to-Mission

© 2022 North Atlantic Industries, Inc. All rights reserved. All other brands or names are property of their respective holders.

This document has been produced for the customers of North Atlantic Industries, Inc. (NAI) with the intent and purpose of providing specific product operation information for systems integration. Unauthorized use or intent is prohibited without written permission from NAI. NAI reserves the right to revise this document to include product updates, corrections, and clarifications and may not conform in every aspect to former issues. The information provided in this document is believed to be accurate and is provided "as is" with no representations or warranties of any kind whether expressed or implied, including, but not limited to, warranties of design, merchantability or fitness for a particular purpose. North Atlantic Industries does not assume any responsibility for its use and shall not be responsible for any liability resulting from reliance upon any information contained herein. No licenses or rights are granted by implication or otherwise in connection therewith.